Graph details

Graph # 33986

Adjacency matrix

011110000000000
100000001001001
100000010100010
100010000000101
100100100010000
000000001110001
000010011000001
001000100000110
010001100001000
001001000000110
000011000001010
010000001010100
000100010101000
001000010110000
010101100000000

Adjacency list

1: 2 3 4 5
2: 1 9 12 15
3: 1 8 10 14
4: 1 5 13 15
5: 1 4 7 11
6: 9 10 11 15
7: 5 8 9 15
8: 3 7 13 14
9: 2 6 7 12
10: 3 6 13 14
11: 5 6 12 14
12: 2 9 11 13
13: 4 8 10 12
14: 3 8 10 11
15: 2 4 6 7

HoG graph id

33986

Graph name

n/a

Graph submitted by

House of Graphs

Invariant values

The definitions of the invariants can be found here.
Invariant Value Invariant Value
Acyclic No Index 4
Algebraic Connectivity 1.46 Laplacian Largest Eigenvalue 7.067
Average Degree 4 Longest Induced Cycle 9
Bipartite No Longest Induced Path 8
Chromatic Index 5 Matching Number 7
Chromatic Number 3 Maximum Degree 4
Circumference 15 Minimum Degree 4
Claw-Free No Minimum Dominating Set 3
Clique Number 3 Number of Components 1
Connected Yes Number of Edges 30
Density 0.286 Number of Triangles 4
Diameter 3 Number of Vertices 15
Edge Connectivity 4 Planar No
Eulerian Yes Radius 2
Genus 2 Regular Yes
Girth 3 Second Largest Eigenvalue 2.54
Hamiltonian Yes Smallest Eigenvalue -3.067
Independence Number 6 Vertex Connectivity 4

A table row rendered like this indicates that the graph is marked as being interesting for that invariant.

Comments

Posted by House of Graphs at Aug 26, 2019 12:34 PM.
A 4-regular nut graph. See "P.W. Fowler, J.B. Gauci, J. Goedgebeur, T. Pisanski and I. Sciriha, Existence of d-regular nut graphs for d at most 11, submitted" for more information.

You need to be logged in to be able to add comments.